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Autonomous multispecies reaction-diffusion systems with more-than-two-site interactions

Ahmad Shariati,1,* Amir Aghamohammadi,2,† and Mohammad Khorrami1,‡

1Institute for Advanced Studies in Basic Sciences, P. O. Box 159, Zanjan 45195, Iran
2Department of Physics, Alzahra University, Tehran 19384, Iran

~Received 26 March 2001; published 8 November 2001!

Autonomous multispecies systems with more-than-two-neighbor interactions are studied. Conditions neces-
sary and sufficient for the closedness of the evolution equations of then-point functions are obtained. The
average numbers of the particles at each site for one species and three-site interactions, and its generalization
to the more-than-three-site interactions, are explicitly obtained. Generalizations of the Glauber model in dif-
ferent directions, using generalized rates, generalized numbers of states at each site, and generalized numbers
of interacting sites, are also investigated.
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I. INTRODUCTION

The principles of equilibrium statistical mechanics a
well established. However, thermal equilibrium is a spec
case, and little is known about the properties of systems
in equilibrium, for example about relaxation toward the s
tionary state. Some interesting problems in nonequilibri
systems include nonequilibrium phase transitions descr
by phenomenological rate equations, and the way the sys
relaxes to its steady state. As mean-field techniques, ge
ally, do not give correct results for low-dimensional system
people are motivated to study exactly solvable stocha
models in low dimensions. Moreover, solving on
dimensional systems should in principle be easier. Exact
sults for some models on a one-dimensional lattice were
tained, for example, in Refs.@1–12#. Different methods have
been used to study these models, including analytical
asymptotic methods, mean field methods, and large-scale
merical methods. Systems with more than one species w
also studied@13–27#. Many of the arguments were based
simulation results. There are, however, some exact resul
well. For most of the models studied, the interaction is
tween nearest neighbors. However, there exist studies
models with more-than-two-site interactions~see Ref.@28#,
for example!.

In Ref. @29#, a ten-parameter family of stochastic mode
with interactions between nearest neighbors was studied
these models, thek-point equal time correlation function
^ninj•••nk& satisfy linear differential equations involving n
higher-order correlations. We call these modelsautonomous,
in the sense that the evolution equations ofn-point functions
are closed~contain onlyn- or less-point functions!. These
linear equations for the average number of the particles^ni&
have been solved. The same models were studied on lat
with boundaries in Ref.@30#. It was shown that these mode
may exhibit dynamic and static phase transitions. The sa
idea was generalized to multi-species models@22# in one
dimension with two-site interactions. There, conditions w
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obtained that the Hamiltonian should satisfy in order that
evolution equation for correlation functions be closed. T
set of equations for average densities can be written in te
of four matrices. These matrices are not determined uniqu
from the Hamiltonian: there is a kind of gauge transform
tion one can apply on them which of course, does not cha
the evolution equation. A formal solution for the avera
densities of different species was found. The large-time
havior of the average densities of different species was
studied. The time evolution equations for more-point fun
tions, generally contain not only these four matrices, but a
elements of the Hamiltonian, and to obtain a closed form
their solution is generally not easy.

The Glauber dynamics was originally proposed to stu
the relaxation of the Ising model near equilibrium states
was also shown that there is a relation between the kin
Ising model at zero temperature and the diffusion annih
tion model in one dimension. There is an equivalence
tween domain walls in the Ising model and particles in t
diffusion annihilation model. Kinetic generalizations of th
Ising model, for example the Glauber model or the Kawas
model, are phenomenological models and were studied
tensively@31–42#.

In this paper, autonomous multispecies systems w
more-than-two-neighbor interactions are studied. Neces
and sufficient conditions for the closedness of the evolut
equations of then-point functions are obtained. As an ex
ample, we explicitly obtain the average number of partic
at each site for one species and three-site interactions. Th
then generalized to the case where more than three site
teract. As another example, a generalization of the Glau
model is presented. In this generalization, the processes
the same as those of the ordinary Glauber model, but
rates depend on three free parameters, rather than one
parameter in the ordinary Glauber model. Finally, this mo
is further generalized to the case where the number of in
acting sites is more than three and the number of state
each site is more than two.

II. MODELS LEADING TO A CLOSED SET
OF EVOLUTION EQUATIONS

The models addressed are multispecies exclus
reaction-diffusion models. That is, each site is a vacancy
©2001 The American Physical Society02-1
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contains one particle. There are several kinds of particles,
at any time at most one kind can be present at each
Throughout the paper, the dynamics is assumed to be tr
lationally invariant. First consider a case where the inter
tion is between three neighboring sites. Then the Ham
tonian describing the system can be written as

H5(
i 51

L

Hi ,i 11,i 12 . ~1!

The number of sites isL and the number of possible states
a site isq ~one of these states, for example theqth one, may
be the vacancy!; different states of each site are denoted
a, a51, . . . ,q. Introducingni

a as the number operator o
the particles of typea in the sitei, we have

(
a51

q

ni
a51. ~2!

The average number of the particles of the typea in the site
i at the timet is

^ni
a&5^Suni

auP~ t !&, ~3!

where uP(t)&ªexp(tH)uP(0)& represents the state of th
system at the timet,

~4!

and
~5!

Thus the time evolution of̂ni
a& is given by

d

dt
^ni

a&5^Suni
aHuP~ t !&. ~6!

The only terms of the HamiltonianH entering the above
equation areHi ,i 11,i 12 , Hi 21,i ,i 11, and,Hi 22,i 21,i . The re-
sult of acting with any matrixQ on the brâ su is equal to that
of acting the diagonal matrixQ̃ on the same bra, provide
each diagonal element of the matrixQ̃ is equal to the sum o
all elements of the corresponding column in the matrixQ.
Thus the actions of (1̂ 1^ na)H, (1^ na

^ 1)H, and (na

^ 1^ 1)H on ^su ^ ^su ^ ^su are equal to the actions of thre
diagonal matrices on̂su ^ ^su ^ ^su. We use the symbol; to
denote the equality of the action on^su ^ ^su ^ ^su. We have

~na
^ 1^ 1!H;(

bgl

1A bgl
a nb

^ ng
^ nl,

~1^ na
^ 1!H;(

bgl

2A bgl
a nb

^ ng
^ nl, ~7!

~1^ 1^ na!H;(
bgl

3A bgl
a nb

^ ng
^ nl,

where iA bgl
a ’s are defined as
06610
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1A bgl
a

ªstsvHbgl
atv ,

2A bgl
a

ªstsvHbgl
tav , ~8!

3A bgl
a

ªstsvHbgl
tva .

An implicit summation~from 1 toq) over the same subscrip
and superscript is always assumed. From these, Eq.~6! takes
the form

^ṅi
a&5 1A bgl

a ^ni
bni 11

g ni 12
l &1 2A bgl

a ^ni 21
b ni

gni 11
l &

1 3A bgl
a ^ni 22

b ni 21
g ni

l&. ~9!

Generally, the right-hand side of Eq.~9! contains one-, two-,
and three-point functions.~Note thatna’s are not indepen-
dent.! We want to obtain a condition that only one-poi
functions appear in the right-hand side. To do this, we c
sider the expression

u5 f abgni
anj

bnk
g , ~10!

and ask for the condition that the right-hand side is expre
ible in terms of linear combinations ofn’s, provided

sanl
a51. ~11!

It is obvious that if

f abg51Fa12Fb13Fg , ~12!

then the right-hand side of Eq.~10! is expressible in terms o
linear combinations ofn’s. To prove that this form forf is
necessary as well, we just count the number of independ
variables inf ’s satisfying the desired property. One can wr
nl

q in terms one 1 and othernl
a’s. Then it is seen that a

general cubic form ofn’s is expressible in terms ofq3 inde-
pendent forms ofn’s, each containing no more than thre
n’s. Of these, 113(q21) expressions@the monomials of
degree zero and one of 3(q21) independent variables# are
desirable. The coefficients of other monomials should
zero. Thus fromq3 independent variables inf, there remain
only 3(q21)11 independent variables inf ’s satisfying the
desired condition. It seems that the right-hand side of
~12! contains more independent variables, namely 3q. But
we note that the transformation

iFa→ iFa1 iB, ~13!

does not change the right-hand side of Eq.~12!, provided

(
i

iB50. ~14!

This means that there are 321 redundant variables in ex
pression~12!. Thus Eq.~12! actually contains the correc
number of independent variables, and hence is the most
eral form of f with the desired property.

So, in order that Eq.~9! be expressible in terms of onl
one-point functions, one must have
2-2
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iA bgl
a 5 1

i A b
a1 2

i A g
a1 3

i A l
a . ~15!

Note that j
i A’s are not determined uniquely. Applying th

gaugetransformation

j
i A b

a→ j
i A b

a1 j
i Ba5 j

i A b
a1 j

i Basb , with (
j

j
i Ba50

~16!

does not change the right-hand side of Eq.~15!.
If Eq. ~15! is satisfied, Eq.~6! takes the form

^ṅi
a&5~1

1A b
a12

2A b
a13

3A b
a!^ni

b&1~2
1A b

a13
2A b

a!^ni 11
b &

1~1
2A b

a12
3A b

a!^ni 21
b &13

1A b
a^ni 12

b &11
3A b

a^ni 22
b &.

~17!

Equation ~15! in fact guarantees that the time-evolutio
equations ofn-point functions contain onlyn- and less-point
functions. In the simplest case, the one-species case,
site is vacant or occupied by only one kind of particle
Then, the matricesj

i A are two by two.
One can do the same arguments for the case where m

than three neighboring sites interact. Suppose the numb
interacting sites isN. We define

iA b1•••bN

a i
ªS)

lÞ i
sa l DHb1•••bN

a1•••aN. ~18!

To ensure that in the time-evolution equation of one-po
functions only one-point functions appear, one must hav

iA b1•••bN

a i 5(
j

j
i A b j

a i . ~19!

Here too, thegauge transformation@Eq. ~16!# does not
change the right-hand side of Eq.~19!, and hence the physic
of the problem. It shoud be noted that Eq.~19! is also suffi-
cient for n-point functions evolution equations to contain n
more thann-point functions.

Some special cases

We now consider some special cases.

1. Single species case

In this case the matricesj
i A are two by two. First con-

sider the caseN53. The time-evolution equation for̂nk&
will then be

^ṅi&52a^ni&1b^ni 11&1b8^ni 21&1g^ni 12&1g8^ni 22&

1d. ~20!

d can be eliminated using the redefinition

xiª^ni&2
d

b1b81g1g82a
. ~21!

Then, introducing the generating function
06610
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G~z,t !5(
2`

`

xiz
i , ~22!

one arrives at

Ġ~z,t !5~2a1bz211b8z1gz221g8z2!G~z,t !,
~23!

the solution to which is

G~z,t !5exp@ t~2a1bz211b8z1gz221g8z2!#G~z,0!.

~24!

Using

expFu

2
~z1z21!G5 (

k52`

`

Ik~u!zk, ~25!

where Ik is the modified Bessel function of orderk, one
arrives at

xk~ t !5e2at (
j ,l 52`

`

Ik2 j 22l~2tAbb8!I l~2tAgg8!

3~b8/b!(k2 j 22l )/2~g8/g! l /2xj~0!. ~26!

A similar procedure can be done for more-than-thre
neighboring-site interactions. The main difference will be t
number of modified Bessel functions appearing in the
pression.

To investigate the large-time behavior of the system, i
easier to use Eq.~24!. Using this and Eq.~22!, one has

xk~ t !5 R dz

2p izk11et f (z)G~z,0!, ~27!

where

f ~z!ª2a1bz211b8z1gz221g8z2, ~28!

and the integration contour is the unit circle. At large time
this integration can be done using the steepest des
method. The result would be

dx~ t !;
et f (z0)

tG . ~29!

Heredx is the deviation ofx from its stationary value,z0 is
the point that maximizesf, andG may be 1/2 or 1/4: It is 1/2
if f 9(z0) does not vanish, and 1/4 if it does. It is seen tha
f (z0) is nonzero, the relaxation of the system toward its s
tionary state is exponential. Iff (z0)50, this relaxation is a
power law, generally liket21/2, but in exceptional cases i
may be liket21/4. A similar argument for more-than-three
neighboring-site interactions shows that the large time
havior of the system may be exponential, or power law w
powers21/2, 21/4, . . . , or21/(2s) for (s11)-site inter-
actions.
2-3
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2. Generalizations of the Glauber model

Consider a two-state three-neighbor interaction of
form

1A bgl
a 5 3Abgl

a 50. ~30!

This means that, similar to the Glauber model, any site
teracts only with its neighboring sites. The interactions a

AAA→ABA, m1 ,

BBB→BAB, m2 ,

ABA→AAA, l1 ,

BAB→BBB, l2 ,
~31!

AAB→ABB, a1 ,

BBA→BAA, a2 ,

ABB→AAB, b1 ,

BAA→BBA, b2 .

This is a generalization of the Glauber model. For the or
nary Glauber model,

m15m2512tanh
J

kBT
,

l15l2511tanh
J

kBT
, ~32!

a15a25b15b251.

Criterion ~19! for the closedness of the evolution equati
for one-point functions results in the following relations b
tween the rates in the generalized Glauber model:

m i2a i5b j2l j for any i , j ,
~33!

a11b15a21b2 .

Thus there are four independent variables in terms of wh
the above eight parameters can be expressed. One can
the expressions as

m15A2B2C2C8,

m25A1B,

l15A1B1C1C8

l25A2B, ~34!

a15A2B2C8,

a25A1B1C,

b15A1B1C8,

b25A2B2C.
06610
e
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Of course one of the parameters can be absorbed throu
time rescaling. The resulting evolution equation for the a
erage particle number is

^ṅi&5A1B22A^ni&1C^ni 11&1C8^ni 21&, ~35!

which is easy to solve.
Note that these reaction rates are not necessirily consis

with detailed balance with respect to some local translati
ally invariant Hamiltonian, whereas the rates of the ordina
Glauber model do satisfy detailed balance. To see the rea
for this, one can use a general nearest-neighbor-interac
translationally invariant Hamiltonian for a two-state syste
This is basically an Ising Hamiltonian with an external ma
netic field. From this, one can calculate the reaction ra
consistent with detailed balance, and demand that they
isfy Eqs.~33!, the criteria that the evolution equation for th
one-point functions be closed. The result is that the exte
magnetic field should be zero. This means that the only tw
state system, which is autonomous and whose rates sa
detailed balance with respect to some local translation
invariant Hamiltonian, is the ordinary Glauber model.

This generalized Glauber model can further be gene
ized in two directions: when the number of the interacti
sites is more than 3, and when the number of states of e
site is more than 2. The first case means that the interac
is in a block of lengthN, resulting in the change of the sta
of a single specific site in that block. This rate of chan
depends on the states of this site and the states of the o
N21 sites. Let us label this specific site of the block by
~Usually the length of the block is considered to be an o
integer (2k11), and the evolving site is assumed to be t
central one.! Denote the state of the sitei by s i , wheres i
can take the values 1~particle! or 0 ~vacancy!. Then the
evolution equation for the average particle number is

^ṅ0&52K (
sW

R~1,sW ! n0)
iÞ0

@12ni1s i~2ni21!#L
1K (

sW
R~0,sW !~12n0!)

iÞ0
@12ni1s i~2ni21!#L .

~36!

Here the state of other interacting sites is denoted bysW ;
R(s0 ,sW ) is the rate of change of the state of site 0, froms0

to 12s0, when the states of the other interacting sites issW .
We are looking for those ratesR(s0 ,sW ) that make the

right-hand side of this evolution equation a linear combin
tion of ^ni& ’s. The claim is that the general form of thes
rates is

R~s0 ,sW !5A1~21!s0S B1(
iÞ0

Ci s i D . ~37!

Inserting this ansatz into the evolution equation~36!, we
obtain
2-4
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^ṅ0&5B1A^122n0&1(
iÞ0

Ci^ni&. ~38!

Thus it is clear that ansatz~37! leads into a closed set o
evolution equations for the average particle number. It
mains to prove that this ansatz is the most general one s
fying this property. To see this, one considers Eq.~36!. On
the right-hand side of this equation there are 2N terms ~the
expectation of monomials in terms ofni ’s!. Of these, we
desire that the coefficients of all be zero, except for the
efficients of the constant term and linear terms. Thus th
are 2N2(N11) equations to be satisfied for the rates~con-
sisting themselves of 2N unknowns!. This shows that the
rates satisfying the desired property containN11 indepen-
dent variables, and it is clear that ansatz~37! containsN
11 independent variables. Thus it is the most general s
tion.

Now consider the second generalization, when the nu
ber of possible states at each site is more than 2, sayq, and
each block consists ofN sites. The state of the sitei is de-
noted bys i , which can takeq values. That site, the evolu
tion of its state being considered, is denoted by 0. The rat
change of the state of the site 0 fromb to a is denoted by
Rb,sW

a . The evolution equation for the average numbers
then

^ṅ0
a&5K (

sW
(

bÞa
Rb,sW

a
n0

b)
iÞ0

ni
s iL

2K (
sW

(
bÞa

Ra,sW
b

n0
a)

iÞ0
ni

s iL . ~39!

Defining

Ra,sW
a

ª2 (
bÞa

Ra,sW
b , ~40!
n.

n,

ys

.

t.
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the evolution equation reads

^ṅ0
a&5(

sW
Rb,sW

a K n0
b)

iÞ0
ni

s iL . ~41!

It is easy to see that for the right-hand side of this equat
be expressible in terms of one-point functions, one sho
have

Rb,sW
a ,50Rb

a1(
iÞ0

iRs i

a . ~42!

Note that this is nothing but

0A b,sW
a

5(
i

i
0A s i

a , ~43!

obtained in Eq.~19!. In this case, otheri A’s vanish. The
evolution equation of the one-point functions is then

^ṅ0
a&5(

i
iRb

a^ni
b&. ~44!

Previous discussion showed that this is the most gen
form of the rates, for which the evolution equations of t
one-point functions contain only one-point functions. He
too, there is agaugefreedom in choosingi R’s, namely,

iRb
a→ iRb

a1 iB
asb , with (

i
iB

a50. ~45!

This is the samegauge freedom encountered with earlie
@Eq. ~16!#.
nd
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@36# C. Godrèche and J.M. Luck, J. Phys. A33, 1151~2000!.
@37# M. Khorrami and A. Aghamohammadi, Phys. Rev. E63,

042102~2001!.
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